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Fig. 1. Three snapshots 
from the initial stages of the 
Rayleigh-Taylor instability 
as simulated by MD. The 
red curve in the last frame 
is a reference sine curve of 
wavelength λmax=2π/kmax, 
illustrating that modes 
near the mode of maximum 
instability quickly dominate 
the shape of the interface.

Molecular dynamics (MD) is a material simulation 
technique in which Newton’s equations of motion 
for a large number of interacting particles are 

solved numerically [1]. In recent years, there has been 
increasing interest in the simulation of various problems 
in fluid dynamics using MD (and other atomistic methods) 
rather than the more traditional continuum techniques 
based on the Navier-Stokes equations [2-6]. The advantages 
of MD stem from the fundamental nature of the processes 
upon which it is based, as well as the fact that it includes 
the thermal fluctuations present in real fluids and that are 
lacking in most continuum solvers. The main disadvantage 
is the computational cost associated with the large number 
of particles present in most MD simulations. The microscale 
thermal fluctuations captured by MD allow us to directly 
probe the emergence of macroscopic hydrodynamic quantities 
as averages over the molecular randomness that underpins 
real-world fluids. In this highlight, we describe such an 
investigation in the context of the initial growth behavior of 
the Rayleigh-Taylor instability (RTI) [6].

The RTI occurs when a heavy fluid lies on top of a light fluid 
in the presence of a gravitational field g. This arrangement 
is unstable, and the two fluids subsequently combine in an 
archetypical example of turbulent fluid mixing. Figure 1 
shows several stages in the early development of the RTI 
in an MD simulation with quasi-2D (or “thin slab”) 
geometry. Given an initial interface between the two fluids 
possessing only small deviations from perfect flatness, it 
can be shown that the amplitude of a perturbation of wave 
number k will grow exponentially in time for small t as Ak(t) 
= Ak(0)exp[n(k) t]. In his 1961 book Hydrodynamic and 
Hydromagnetic Stability [7], Chandrasekhar derived, via 
linearization of the incompressible Navier-Stokes equations, 
a function f such that the growth rate spectrum n(k) satisfies 

f(n(k), k) = 0. This equation can be solved numerically to 
yield continuum-based predictions for the shape of n(k). In 
particular, note that n(k) has a maximum at kmax, known 
as the mode of maximum instability. In addition, for the 
systems with surface tension we consider here, n(k) has a 
cutoff at kcut, at which n(k) passes from positive to negative.

The growth-rate spectrum of the RTI can be measured 
directly in MD simulations by taking Fourier transforms of 
the early development of the interface. We have performed 
such an analysis for a sequence of MD simulations, each 
describing a quasi-2D domain approximately 1 μm in width 
by 0.2 μm in height and containing approximately 2,000,000 
Lennard-Jones particles. Due to the small length scales 
considered, it was necessary for the gravity g to be very 
large in order for the instability to develop in a reasonable 
number of time steps. The three values for g considered were 
g=2.7 x 1010 gEarth,, g=1.3 x 1010 gEarth, and g=0.3 x 1010 
gEarth. The presence of entirely physical fluctuation-induced 
variations in the growth rate spectrum from one simulation 
to the next necessitated that we perform many runs at each 
gravity to obtain an adequate average n(k) for comparison 
with Chandrasekhar’s prediction. The results are shown 
in Fig. 2. Note that despite the vastly different levels of 
description between the MD simulations and the continuum 
theory, the agreement between the two is quite good. To 
within fluctuations, MD captures both the existence and 
value of the mode of maximum instability kmax, as well as the 
presence of the cutoff wave number kcut. At large values of k, 
there is some discrepancy between the growth rate values 
manifested by MD and the theoretical predictions. This can 
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be attributed to a number of factors, including the existence 
of nonexponential oscillations of the interface and the 
presence of nonlinear transport effects for low-wavelength 
disturbances.

In addition to the mean growth rate n(k), it is instructive to 
consider the physical variation Δn(k) in the growth rate as 
a function of k. This quantity is graphed in Fig. 3 for each 
of the three gravities we considered, along with a curve 
representing a polynomial fit to the low-k segment of all 
three sets of data to aid in recognizing the general trend. 
The important point to note is that the physical spread in 
the growth rate with respect to its mean is a monotonically 
increasing function of the wave number k (i.e., a decreasing 
function of the wavelength λ). Since the predicted mean 
is derived from purely hydrodynamic considerations, this 
is a clear demonstration that the validity of the Navier-
Stokes equations emerges statistically as an average over 
the microscopic fluctuations in a fluid, and that individual 
instances of real fluid systems deviate from this average to an 
increasing degree as smaller scales are considered.

For further information contact John L. Barber at 
jlbarber@lanl.gov.
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Fig. 2. Growth-rate spectra 
from MD simulations for 
each of the three gravities 
considered, along with the 
corresponding predictions 
from continuum theory.

Fig. 3. Physical variation 
in the growth rate as a 
function of k from MD 
simulations, along with 
a curve representing a 
rough polynomial fit to the 
moderate-k segment of the 
data. Note that the apparent 
increase in Δn(k) at very 
small k is an artifact of the 
periodic boundary conditions 
we employed and may be 
ignored.
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